In all of my years of gardening various political religious sects have deified things organic. Sixty years ago and beyond, much of the worship emanated from Emmaus, Pennsylvania. Now city folks and others who blaspheme America’s oil industry have picked up the chant.

There is no doubt in my mind the best of all fertilizer additions one can apply to outdoor growing things in general, is good old 1-1-1 well rotted cow manure. But, ow many cows have you seen lately pooping around your neighborhoods?

Most, the vast majority of Americans are indoor people and have no idea what a 1-1-1 fertilizer analysis means. By the way, a 1-1-1 analysis is the same as 10-10-10 except for the concentration of the content. The numbers refer to Nitrogen-Phonphorus, and Potassium, in that order on any label, the macro nutrients generally most important in leafy plant growth. Generally, Nitrogen stimulates plant leaf growth, Phosphorus, plant root growth, and Potasium flower and fruit growth.

A good way to remember the order of these macronutrients is they are in alphabetical orderon labels in our English language…..No so in Latin’s N-P-K arrangement, for K is the symbol for Potassium.

The cultural battle centers on worshipped organic fertilizers and the disdain of the inorganic…..a battle unworthy of knowledgeable civilized, Earth aware folks.

Plants have no clue where their NPK nor anyother nutrient more specifically needed comes from. They can’t identify one from the other, they take what is available. N is N, P is P, and P is K.

In the general what needs to be remembered, I think, inorganic fertilizers are more quickly absorbed by needy plants all else being equal. Unhappy garden plants usually announce some issue by yellowing when yellowing is neither natural to the plant, such as the conifer King’s Gold Chamaecyparis or not appropriate to the season. If your dwarf blue spruce or a normally bluish pine is yellowing, however, since the issue be be a long term lack of nitrogen, you might decide on a regular oranic nitrogen fertilizer program over a long period of time for attempted cure.

Remember, too, there are many other plant disorders which show yellowing of natural foliage, not just a lack of nitrogen.

I have an automatic watering system during the growing season, the best investment for healthy plant growth I have ever made. Every early Spring, I apply Milorganite, a 6-2-0 organic as I have for decades and decades… habit…..(never change a winning hand). Occasionally, maybe twice a decade I’ll remember to put some potash here and there. One other issue in my landscape garden situation….My Sunkist Arborvitaes which by commercial label admit maturing to 8 feet in height, have surpassed 20 feet instead from my watering-fertilizing- organic matter muclhing regimen.

I found the following detailed explanation about what you should know about your landscape garden, and probably more than you care to know….but the information is available for you to pick and choose.

Understanding Nitrogen in Soils

by Mike O’Leary, George Rehm and Michael Schmitt at the University of Minnesota:

Environmental and economic issues combined have increased the need to better understand the role and fate of nitrogen (N) in crop production systems. Nitrogen is the nutrient most often deficient for crop production in Minnesota and its use can result in substantial economic return for farmers. However, when N inputs to the soil system exceed crop needs, there is a possibility that excessive amounts of nitrate (NO 3 – ) may enter either ground or surface water.

Managing N inputs to achieve a balance between profitable crop production and environmentally tolerable levels of NO 3 – in water supplies should be every grower’s goal. The behavior of N in the soil system is complex, yet an understanding of these basic processes is essential for a more efficient N management program.

Nitrogen Cycle
Nitrogen exists in the soil system in many forms and changes (transforms) very easily from one form to another. The route that N follows in and out of the soil system is collectively called the “nitrogen cycle” (figure 1) and is biologically influenced. Biological processes, in turn, are influenced by prevailing climatic conditions along with the physical and chemical properties of a particular soil. Both climate and soils vary greatly across Minnesota and affect the N transformations for the different areas.

Figure 1. The Nitrogen Cycle.

Sources of N for Plant Growth
Nitrogen can be supplied for plant growth from several sources:

The atmosphere
Biological fixation
Atmospheric fixation
Commercial fertilizers
Soil organic matter
Crop residues
Animal manures

Atmospheric N is the major reservoir for N in the N cycle (air is 79% N 2 gas). Although unavailable to most plants, large amounts of N 2 can be used by leguminous plants via N fixation . In this biological process, nodule-forming Rhizobium bacteria inhabit the roots of leguminous plants and through a symbiotic relationship convert atmospheric N 2 to a form the plant can use. The amount of N 2 fixed by legumes into usable N can be substantial, with a potential for several hundred lbN/acre/year to be fixed in an alfalfa crop. Any portion of a legume crop, that is left after harvest, including roots and nodules, supplies N to the soil system. When the plant material is decomposed, N is released. Several non-symbiotic organisms exist that fix N, but N additions from these organisms are quite low (1 – 5 lb/acre/year). In addition small amounts of N are added to soil from precipitation . The amount of N supplied from precipitation averages 5 – 10 lb/acre/year in Minnesota.

Commercial N fertilizers are also derived from the atmospheric N pool. The major step is to combine N 2 with hydrogen (H 2 ) to form ammonia (NH 3 ). Anhydrous ammonia is then used as a starting point in the manufacture of other nitrogen fertilizers. Anhydrous ammonia or other N products derived from NH 3 can then supplement other N sources for crop nutrition.

Nitrogen can also become available for plant use from organic N sources which must be converted to inorganic forms before they are available to plants. Nitrogen is available to plants as either ammonium (NH 4 + ) or nitrate (NO 3 – ). Animal manures and other organic wastes can be important sources of N for plant growth. The amount of N supplied by manure will vary with the type of livestock, handling, rate applied, and method of application. Since the N form and content of manures varies widely, an analysis of manure is recommended to improve N management.

Crop residues from non-leguminous plants also contain N, but in relatively small amounts compared with legumes. Nitrogen exists in crop residues in complex organic forms and the residue must decay (a process that can take several years) before N is made available for plant use.

Soil organic matter is also a major source of N used by crops. Organic matter is composed primarily of rather stable material called humus that has collected over a long period of time. Easily decomposed portions of organic material disappear relatively quickly, leaving behind residues more resistant to decay. Soils contain approximately 2,000 pounds N in organic forms for each percent of organic matter. Decomposition of this portion of organic matter proceeds at a rather slow rate and releases about 20 lbN/acre/year for each percent of organic matter. A credit for the amount of N released by organic matter is built into current University of Minnesota N recommendations.

Nitrogen Transformations
Nitrogen, present or added to the soil, is subject to several changes (transformations) that dictate the availability of N to plants and influence the potential movement of NO 3 – to water supplies.

Organic N that is present in soil organic matter, crop residues, and manure is converted to inorganic N through the process of mineralization . In this process, bacteria digest organic material and release ammonium (NH 4 + ) nitrogen. Formation of NH 4 + increases as microbial activity increases. Bacterial growth is directly related to soil temperature and water content. The ammonium supplied from fertilizers is the same as the ammonium supplied from organic matter.

Ammonium-N has properties that are of practical importance for N management. Plants can absorb NH 4 + -N. Ammonium also has a positive charge and, therefore, is attracted or held by negatively charged soil and soil organic matter. This means that NH 4 + does not move downward in soils. Nitrogen in the ammonium form that is not taken up by plants is subject to other changes in the soil system.

Nitrification is the conversion of NH 4 + -N to NO 3 – -N. Nitrification is a biological process and proceeds rapidly in warm, moist, well-aerated soils. Nitrification slows at soil temperatures below 50 degrees F—thus, the general recommendation is that ammoniacal (NH 4 + forming) fertilizers should not be fall- applied until soils are below 50 degrees F. Nitrate is a negatively charged ion and is not attracted to soil particles or soil organic matter like NH 4 + . Nitrate-N is water soluble and can move below the crop rooting zone under certain conditions.

Denitrification is a process by which bacteria convert NO 3 – to N gases that are lost to the atmosphere. Denitrifying bacteria use NO 3 – instead of oxygen in the metabolic processes. Denitrification takes place where there is waterlogged soil and where there is ample organic matter to provide energy for bacteria. For these reasons, denitrification is generally limited to topsoil. Denitrification can proceed rapidly when soils are warm and become saturated for 2 or 3 days.

A temporary reduction in the amount of plant-available N can occur from immobilization (tie up) of soil N. Bacteria that decompose high carbon-low N residues, such as corn stalks or small grain straw, need more N to digest the material than is present in the residue. Immobilization occurs when nitrate and/or ammonium present in the soil is used by the growing microbes to build proteins. The actively growing bacteria that immobilize some soil N also break down soil organic matter to release available N during the growing season. There is often a net gain of N during the growing season because the additional N in the residue will be the net gain after immobilization-mineralization processes.

Nitrogen Loss From the Soil System
Nitrogen is lost from the soil system in several ways:

Crop removal
Soil erosion and runoff

In contrast to the biological transformations previously described, loss of nitrate by leaching is a physical event. Leaching is the loss of soluble NO 3 – as it moves with soil water, generally excess water, below the root zone. Nitrate that moves below the root zone has potential to enter either groundwater or surface water through tile drainage systems.

Coarse-textured soils have a lower water-holding capacity and, therefore, a higher potential to lose nitrate from leaching when compared with fine-textured soils. Some sandy soils, for instance, may retain only 1/2 inch of water per foot of soil while some silt loam or clay loam soils may retain up to 2 inches of water per foot. Nitrate can be leached from any soil if rainfall or irrigation moves water through the root zone.

Denitrification can be a major loss mechanism of NO 3 – when soils are saturated with water for 2 or 3 days. Nitrogen in the NH 4 + form is not subject to this loss. Management alternatives are available if denitrification losses are a potential problem.

Significant losses from some surface-applied N sources can occur through the process of volatilization . In this process, N is lost as the ammonia (NH 3 ) gas. Nitrogen can be lost in this way from manure and fertilizer products containing urea. Ammonia is an intermediate form of N during the process in which urea is transformed to NH 4 + . Incorporation of these N sources will virtually eliminate volatilization losses. Loss of N from volatilization is greater when soil pH is higher than 7.3, the air temperature is high, the soil surface is moist, and there is a lot of residue on the soil.

Substantial amounts of N are lost from the soil system through crop removal . A 150 bu/acre corn crop, for example, removes approximately 135 pounds of N with the grain. Crop removal accounts for a majority of the N that leaves the soil system.

Nitrogen can be lost from agricultural lands through soil erosion and runoff . Losses through these events do not normally account for a large portion of the soil N budget, but should be considered for surface water quality issues. Incorporation or injection of manure and fertilizer can help to protect against N loss through erosion or runoff. Where soils are highly erodible, conservation tillage can reduce soil erosion and runoff, resulting in less surface loss of N.

Avoid Misconceptions
In considering the many transformations and reactions of N in soils, there are some major points to keep in mind. Although N can be added to soil in either organic or inorganic forms, plants take up only inorganic N (that is, NO 3 – and NH 4 + ). One form is not more important than the other and all sources of N can be converted to nitrate. Commercial N fertilizers, legumes, manures, and crop residues are all initial sources of NO 3 – and NH 4 + and once in the plant or in the water supply it is impossible to identify the initial source.

Nitrate is always present in the soil solution and will move with the soil water. Inhibiting the conversion of NH 4 + to NO 3 – can result in less N loss and more plant uptake; however, it is not possible to totally prevent nitrification. There is no way to totally prevent the movement of some NO 3 – to water supplies, but sound management practices can keep losses within acceptable limits.

This publication discusses several factors that are key to understanding N behavior in a soil system. Numerous sources of N exist and must be considered when evaluating the N budget for any field or region. Nitrogen’s mobility factor in the soil must be considered when developing N programs and evaluating environmental effects. Nitrogen loss from the soil system is greatly affected by soil type and climate. Sandy soils may lose N through leaching while on heavy, poorly drained soils it may be lost through denitrification. Because Minnesota has such diverse soils and climate, interpretation of the N cycle should be site specific.

The following publications which discuss several aspects of N management in more detail can be requested through the county offices of the Minnesota Extension Service or from the Extension Store, 20 Coffey Hall, 1420 Eckles Ave., University of Minnesota, St. Paul, MN 55108-6069.